Understanding Anaerobic C Dynamics and Methane Production in Peatlands through Molecular Characterization of Porewater DOM Reactivity: Oxygen Shedding by DOM during Fermentation

Malak M. Tfaily, Jane E. Corbett, Jeffrey P. Chanton & Bill Cooper

Florida State University

Department of Chemistry and Biochemistry Department of Earth, Ocean and Atmospheric Science

> INTECOL 9 June 7, 2012

Peat soils are estimated to store one-third of the world's soil carbon

While the build-up of organic matter in peat is a store of carbon, this material is also decomposing, releasing CO₂ and CH₄ to the atmosphere

Methanogenesis is the dominant pathway of decomposition

CO₂ concentrations are often reported to be higher than CH₄ concentrations

Objective

To identify the source of the excess anaerobic CO₂ production in peatlands relative to methane production

To examine changes in DOM composition for evidence of CO₂ evolution

Sample collection

<u>RL IV Bog</u>

RL IV Fen

Depth (cm)	рН	DOC (mM)	Depth (cm)	рН	DOC (mM)
10	4.2	4.71	10	5.7	2.68
50	4.3	5.64	50	5.9	2.79
100	4.4	7.17	100	6.2	2.46
150	4.5	7.95	150	6.5	2.28
200	4.8	9.38	200	6.7	1.99
250	5	11.43	250	6.8	1.94
290	5.2	10.32	290	6.9	1.98

Ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS)

Distinguish individual elemental compositions of DOM molecules

¹H-Nuclear Magnetic resonance (¹H-NMR)

Determine of the relative abundances of different functional groups contained in DOM

PARAFAC Excitation/Emission Matrix (EEM) fluorescence spectroscopy

Investigate the optically active component of DOM

Sample collection

<u>RL IV Bog</u>

RL IV Fen

Depth (cm)	рН	DOC (mM)	Depth (cm)	рН	DOC (mM)
10	4.2	4.71	10	5.7	2.68
50	4.3	5.64	50	5.9	2.79
100	4.4	7.17	100	6.2	2.46
150	4.5	7.95	150	6.5	2.28
200	4.8	9.38	200	6.7	1.99
250	5	11.43	250	6.8	1.94
290	5.2	10.32	290	6.9	1.98

Negative-Ion Electrospray Ionization FT-ICR MS (9.4 Tesla) 4184 peaks > 6σ baseline noise (200 < m/z < 900) m/ $\Delta m_{50\%}$ = 680,000 at m/z 501 14 peaks at m/z 501

Bog vK diagrams

Bog vK diagrams

DBE = C - (H/2) + (N/2) + 1

DBE-O represents C=C bonds by subtracting out the C=O contribution: measures

Fen vK diagrams

PARAFAC-EEMS

PARAFAC-EEMS

14

PARAFAC-EEMS

% C1

15

> Anearobic bacteria mainly feed on the terrestrial humic-like component, C1, to produce the microbial component, C3.

Bog DOM → Mainly refractory Fen DOM → Reactive & supports fermentation

H-Nuclear Magnetic resonance (NMR)

Aromatic and carbohydrate components represented up to 70% of deep bog DOM but comprised a much smaller proportion of deep fen DOM

Organic matter held under sub-oxic conditions sheds organically bound oxygen to produce CO₂ associated with fermentation

This observation was more pronounced at the fen than at the bog

Differences in source materials and / or environmental factors

Acknowledgments

- The Florida State University
- Bill Cooper
- Jeffrey Chanton
- Paul Glaser
- David Burdige
- Donald Siegel

NSF Grant # EAR 0628349

Nature vs Nuture

Occurrences that follow DOM postproduction

Enzymatic "latch model"

Low activity of enzyme phenol oxidize (low pH and [O₂]) Decomposition of organic matter in peat is depressed (High C1)

Low C3/Higher C1

Decrease in reactive DOM intermediates

> Less advection downward → Low microbial uptake

SUVA

SUVA = $A_{254 (m-1)}$ / [DOC] (mg C/L) = Correlated with DOM <u>aromaticity</u>

